
Exploring Code Size and Footprint, and In-Memory 
Database Techniques to Minimize Footprint 

Are Either Relevant to Embedded Systems in the IoT Age? 

Abstract: The terms ‘code size’ and ‘footprint’ are often used interchangeably. But they are not 
the same; code size is a subset of footprint. This paper will explain the differentiation and 
relevance, then proceed to describe some of the techniques employed within eXtremeDB® to 
minimize footprint. 
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1. Are ‘footprint’ and ‘code size’ the same thing? 2. And, is either relevant in the current age? 

 
1. No. Code size is a subset of footprint. In the context of an in-memory database system, ‘footprint’ 
consists of: 
                Code size 
                Stack memory used 
                DRAM used for anything other than raw data 
With respect to code size, we must have an all-encompassing view. We’re not the only embedded 
database vendor that boasts about a ‘small footprint’. But, eXtremeDB might be the only embedded 
database that has no external dependencies. For purposes of this discussion, it means that using the 
eXtremeDB core in-memory database does not cause the application to link in the C run-time library for 
things like malloc/free, string operations, etc. A claim of ‘small footprint’ is hollow when the application 
is forced to link a megabyte of the C run-time library. 
 
2. Yes, it’s relevant. Size matters. We can impute two things from a small code size: The function call 
depth and the number of CPU instructions for any given operation. A core embedded database engine 
with a code size of 150KB is going to require fewer function calls, and each function call is going to 
require fewer CPU instructions than another embedded database engine with a code size of 1.5MB. 
Whether you’re executing on a 200 mHz ARM processor or a 3 gHz Intel SkyLake processor, a database 
lookup that requires 100 CPU cycles is 10X faster than a database lookup that requires 1000 processor 
cycles because the code is that bloated.  
 
Stack size in embedded/real-time operating systems is quite limited. For example, the default stack size 
with VxWorks is just 20KB. Unlike Windows and Linux, the stack does not grow dynamically. If the stack 
size is exceeded, the program fails. This ties directly back to function call depth, but also influences how 
much, and how, information is passed between functions, which is a consideration that must be 
considered when the database system is designed. This is a key differentiator between an embedded 
database system that was written for embedded systems, and an embedded database system that is 
merely capable of running on embedded systems. In eXtremeDB, information relied on by two or more 
functions in the call stack is sometimes put in our private heap and passed by reference, but never 
passed by value. In addition, indeterminate recursion is avoided altogether. 
 
It should be obvious, but for an in-memory database, DRAM is storage space. Any memory that is used 
for anything other than raw data limits the amount of raw data that can be stored in any given amount 
of DRAM. In addition to storing raw data, memory is used for meta data (data about the data, the most 
common example being the database dictionary), index structures such as hash tables and b-trees, and 
database internals like transaction buffers, and handles of various types. Let’s use some real numbers to 
illustrate: suppose that in-memory database ‘A’ imposes 100% overhead on the raw data. That means 
that 20MB of DRAM will be required to store 10MB of raw data. In-memory database ‘B’ only imposes 
30% overhead, so it only requires 13MB to store the same 10MB of raw data. In an embedded system 
like a portable media player that only has 32MB of memory to begin with, that’s a meaningful 
difference! 
 
eXtremeDB is in-memory database ‘B’. 
 
eXtremeDB employs a number of techniques to minimize the overhead. The first, and biggest, influencer 
is index types and how indexes are organized. eXtremeDB offers a wider variety of index types than 



other database systems, but the most commonly used are hash and b-tree indexes. By their nature, hash 
indexes use less memory (and are faster) than b-tree indexes. But, hash indexes have less utility: they 
don’t maintain sorted order or facilitate partial key searches. By far, the most common type of index in 
database systems is the b-tree index, which overcomes the limitations of the hash index, and offers 
decent Log2N performance. To understand the advantages and, for purposes of this discussion, 
disadvantages of a b-tree you need to have at least a high-level understanding of their organization. 
 

 
 
A b-tree is an upside-down tree, with the ‘root’ node at the top. Each node has a number of slots where 
the number of slots is a function of the size of the node (in bytes) and the size of the ‘payload’. 
Simplistically, number-of-slots = node size / payload.  Each slot contains  

(1) a pointer to a node with key values that precede the key value in this slot 
(2) this key value 
(3) a pointer to the actual data record that is being indexed.  

As you can see in the illustration, b-trees are normally partially empty (up to 45% empty), so there’s 
built-in space inefficiency. The key value exists in the slot so that database systems can implement an 
optimization called a ‘covered query’, which simply means that if column(s) queried are only the indexed 
column(s), then the query’s results can be obtained by only scanning the index; there is no need to 
follow the pointer to the data record and the amount of logical I/O is reduced by one-half. But, this 
optimization only makes sense for persistent databases, because of the speed of storage media. 
Following a pointer in memory to the data record takes just nanoseconds, whereas following a pointer 
to a track and sector on a solid state disk can be as low as 1 microsecond, and generally on the order of 
10 milliseconds for a hard disk drive. The use of precious DRAM to store redundant key values is 
unjustified, in most cases. By default, eXtremeDB b-tree indexes do not store redundant key values in b-
tree node slots. This leads to another footprint-saving advantage: Index slot sizes are constant because 
the slot only contains a reference to the indexed data, not the data itself. So, regardless of whether an 
index is over a 2-byte short integer, or a 64-byte character field, the slot size is the same, which 
simplifies the code. 



The size of b-tree nodes is normally a multiple of the disk blocking factor to maximize I/O efficiency. In 
other words, if the disk block size is 4096 bytes, then the b-tree node size is e.g. 4096, 8192, or 16384 
bytes. It makes no sense to have an index node size of 1024 knowing that the disk and file system are 
going to perform I/O in units of 4096; 3072 bytes of that I/O would be for no productive purpose.  In 
addition to maximizing I/O efficiency, a large(-ish) node size keeps the b-tree more shallow. For a 
persistent database, each level that we need to descend to find the search value equates to a logical I/O. 
A b-tree that is five levels deep will require >3 probes into the b-tree on average. So, having large node 
sizes means having a shallower tree which means fewer logical I/O which means better performance. 
However, none of this calculus holds up for b-trees in memory. Having large nodes means having more 
empty slots which means more memory consumed for no productive purpose. And, given the fast access 
of DRAM, having an average number of probes of ~4 is not meaningfully different than an average 
number of ~3 probes, but having fewer empty slots can translate to substantially less memory 
consumption. Also, there’s no reason to harmonize b-tree node size with anything because DRAM is not 
a block device. So, in-memory b-tree nodes are usually small, for example a couple of hundred bytes. 
Finally, having a fixed slot size by not including the indexed data in the slot usually means having smaller 
slots, which translates to more slots per node which translates to a shallower tree. 

B-tree indexes are incredibly flexible. We can use them for =, >, <, >=, <=, range searches, sorted order
retrieval and partial key searches. But, sometimes, we only need to look up one exact record, e.g. find
the artist ‘Elton John’. For this, a hash index is far superior. First, there’s minimal wasted space; it’s a
table that is sized based on the anticipated number of entries. Second, it’s a table, not a tree, so it has
an inherent performance advantage. Instead of walking the tree nodes, a hash value is computed (based
on some algorithm) which translates a key value to hash table entry (offset). After a few CPU cycles to
calculate the hash, the DBMS steps right into the hash table at that offset and follows the pointer to the
data record. Hash indexes save memory and outperform b-tree indexes, most of the time (every rule has
exceptions).

The second biggest influencer in eXtremeDB’s frugal use of memory is the layout of the data. In most 
databases systems, when a table is defined (e.g. through an SQL CREATE TABLE statement), the data is 
stored exactly how it was defined. For example: 
CREATE TABLE example ( 

 Column1  char(1), 
 Column2  int, 
 Column3  char(2), 
 Column4  float(4) 

); 
Would be laid out in memory (and on storage, in the case of a persistent database) as 

BYTE   
1 
2    
3,4        
5,6 
7     
8,9,10,11 

CONTENT 
Column1 
padding to align the int on a 2-byte boundary 
Column2 
Column3 
padding to align the float on a 4-byte boundary 
Column4 



Each stored row would waste two bytes of memory due to the padding. If there are 1 million rows, 
that’s 2 million wasted bytes which is, again, meaningful in a device that only has 32MB of memory to 
begin with. But, this is also meaningful in so-called Big Data: 100 million rows laid out as above would 
consume 1,100,000,000 (1.1 GB) of memory, of which 200 MB is padding. 
 
A better solution is for the DBMS to rearrange the fields to eliminate the padding: 

BYTE   
1,2,3,4  
5,6    
7,8                  
9     

CONTENT 
Column4 
Column2 
Column3 
Column1 

The order of Column3 and Column1 is not actually important in this case. In the Big Data case, this 
layout would only require 900 MB of DRAM, or permit 22,222,222 more rows in the same 1.1 GB of 
DRAM as the non-aligned data layout. 
 
Another significant influencer in eXtremeDB’s frugal use of memory is it’s use of proprietary purpose-
specific memory managers. A memory manager like the C run-time’s malloc is called a list allocator. 
Available memory is organized as a linked list (chain) of available blocks of memory. There’s a pointer to 
the first block in the list and an integer that records what the size of that block is. That block has a 
pointer to the next block and an integer indicating the size of that block, and so on for every block of 
available memory. For a 32-bit system, that’s 8 bytes of overhead for every free block and 16 bytes of 
overhead for a 64-bit system. Like a b-tree, a list allocator is very versatile, it can allocate blocks of 
memory of varying sizes and coalesce adjacent free blocks into a single larger free block. But, sometimes 
we don’t need that flexibility and conserving memory would be more important. One example is 
managing database pages (that are used to store data and index nodes). Per the previous discussion, the 
size of these objects is fixed, so we don’t need the versatility to allocate random size pieces of memory. 
A block allocator is a better fit. A block allocator subdivides a large block of memory into smaller fixed 
size blocks and like the list allocator maintains a list of free blocks. But the size of each free block is 
constant and known, so the amount of overhead is immediately cut in half. Another example is found in 
SQL engines. When a SQL statement is received, it needs to be parsed, then optimized, then executed 
and the result set created. Each of these steps requires amounts of memory that can vary from one SQL 
statement to the next, so we want the flexibility of an allocator, but the nature of the allocations is that 
all of the memory is allocated in the first phase, and then all of it is released in the next phase. In other 
words, allocations and frees are not intermixed. For this pattern, a stack allocator fits. A stack allocator 
is given a block of memory and keeps a pointer to the first byte. If 10 bytes are allocated, the pointer is 
advanced 10 bytes, and so on for each subsequent allocation. When the SQL engine is done with each 
phase of the statement, the pointer is rewound to the start. There is virtually no overhead with this 
allocator; there’s no list of pointers and no need to track the size of each allocated or freed block. 
Another pleasant byproduct of the stack allocator is performance; there may be hundreds of thousands 
of individual memory allocations while parsing, optimizing and executing a SQL statement, but a single 
‘free’ rewinds the pointer and there is no need to free each prior allocation one-by-one. This also 
eliminates the potential for memory leaks, so there’s a safety advantage, as well. Memory allocators are 
explored in more detail in this on-demand webinar. 
 
In summary, code size and footprint are not the same thing. Both are still relevant. For an embedded 
database system, code size should refer only to the object code library size and the required external 
libraries (e.g. the C runtime). Smaller is better. Footprint incorporates code size, but also needs to factor 
in everything else that contributes to the overall memory consumption of the final solution. Especially in 
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embedded/real-time resource constrained systems, and in-memory databases, footprint is an important 
consideration. 




