
Multi-Core and Embedded Software: Optimize
Performance by Resolving Resource Contention

Presented by
McObject LLC

February 29, 2012

© 2012 McObject LLC

Achieving Linear Performance Gains With Multi-Core

© 2012 McObject LLC

▪ Multi-core CPUs should make software
faster

▪ But, processes often contend for system
resources
– Threads vying for the standard C runtime memory allocator

– Contention for shared data

▪ Solutions
– Custom per-thread allocator

– Multi-version concurrency control (MVCC)

Memory Allocation

▪ malloc() and free()

▪ new and delete

▪ Used liberally

▪ But without awareness of how they
actually work

© 2012 McObject LLC

The “Heap”

© 2012 McObject LLC

▪ Organized as a pool of contiguous memory
locations

▪ Referenced by a singly-linked chain of pointers

▪ Memory allocation:
– Walk the chain looking for a large enough free hole

– When found
• Unlink the hole

• Divide it

• Link remainder back in

• Return pointer to allocated memory

Many Threads Want the Same Resource…

© 2012 McObject LLC

…End Up Being Serialized

© 2012 McObject LLC

The Solution

▪ A custom memory manager that

avoids synchronization

▪ Thread local allocator

▪ Based on block allocator

▪ Similar concept to Thread Local

Storage

© 2012 McObject LLC

Thread-Local Allocator

▪ Allocator creates and maintains a number of linked-lists
(chains) of same-size “small” blocks that are made out of
“large“ pages.

▪ To allocate memory, the allocator simply “unlinks” the
block from the appropriate chain and returns the pointer
to the block.

▪ When a new large page is necessary, the allocator uses a
general-purpose memory manager (standard malloc) to
allocate the page.

▪ As long as all objects are allocated and de-allocated locally
(i.e. by the same thread), this algorithm does not require
any synchronization mechanism at all.

© 2012 McObject LLC

Thread Local Allocator

• Pending-free requests lists (PRLs) are maintained for each
thread: when an object allocated in one thread is being
de-allocated by another thread, the de-allocating thread
links the object into this list.

• Access to the PRLs is protected by a mutex.

• Each thread periodically de-allocates its share of objects
on the list at once.

• The number of synchronization requests is reduced
significantly:
– Often the object is freed by the same thread that had

allocated it.

– When the object is de-allocated by a different thread, it
does not interfere with all other threads, but only with
those that need to use the same PRL.

© 2012 McObject LLC

Thread-Local Allocator Data Structures

Each thread’s allocator maintains its “own” local data that

includes the chains of blocks and its “pending free request list”

within its TLS variables.

© 2012 McObject LLC

Thread 1

32 bytes list

64 bytes list

512 bytes list pending free requests

list

Thread 2

32 bytes list

64 bytes list

512 bytes list pending free requests

list

Allocator’s structures (global) are mapped to each

thread local storgae

Allocator API

© 2012 McObject LLC

◼ The allocator exports three functions with syntax similar to the standard C
runtime allocation.

◼ The interface also includes a simple way to redefine the default new and
delete operators.

#ifndef __THREAD_ALLOC_H__

#define __THREAD_ALLOC_H__

#include <stddef.h>

#ifdef __cplusplus

extern "C" {

#endif

/* exported stuff */

void* thread_alloc(size_t size);

void* thread_realloc(void* addr, size_t size);

void thread_free(void* addr);

#ifdef __cplusplus

}

/* redefine standard “new” and “delete” if necessary */

#include <new>

#ifdef REDEFINE_DEFAULT_NEW_OPERATOR

void* operator new (size_t size) throw(std::bad_alloc) { return thread_alloc(size); }

void operator delete (void* addr) throw() { thread_free(addr); }

void* operator new[](size_t size) throw(std::bad_alloc) { return thread_alloc(size); }

void operator delete[](void* addr) throw() { thread_free(addr); }

#endif

#endif

#endif

Impact of Thread Local Allocators

• Two tests
– Compare performance when the allocation pattern is thread-local: all de-

allocations are performed by the same thread as the original allocations.

– Compare performance when objects are allocated by one thread (called a
producer) and freed by another (a consumer).

© 2012 McObject LLC

Test Results

The graph depicts elapsed time when
allocation and release of memory are both
within the same thread.

© 2012 McObject LLC

elapsed time (seconds), 10,000,000 alloc/free X 24 threads, 24 cores

653

1

0 100 200 300 400 500 600 700

"local" malloc

"local" TLA

elapsed time

Test Results, Cont.

The graph depicts elapsed time when every allocation is freed

by a thread other than the one that allocated it. The test was

run with just two threads to isolate the performance difference

to just the reduced synchronization requirements of the

thread-local allocator, even when all allocations are “global”.

© 2012 McObject LLC

elapsed time (seconds) 10,000,000 alloc/free X 2 threads, 2 cores

22 23 24 25 26 27 28 29

"global" malloc

"global" TLA

elapsed time

Test Results, Cont.

• Result: dramatic performance
improvements are obtained by replacing
standard allocation mechanism with
thread-local in multi-threaded, multi-core
applications.

• The allocator and test source code are
available for free download:
www.mcobject.com/webinar_mem_mgt

© 2012 McObject LLC

Contention For Shared Data

▪ Similar problem to memory allocation

▪ Shared resource must be protected

▪ Pessimistic locking is the norm

▪ Pessimistic locking blocks concurrent
access (i.e. serializes) regardless of
granularity

© 2012 McObject LLC

Pessimistic Locking

▪ Database

▪ Table

▪ Row

© 2012 McObject LLC

Pessimistic Locking

▪ Database locking

▪ Read+write accesses are serialized

▪ Read-only accesses are parallel with other read-only

accesses, but blocked by read+write accesses

▪ Table locking

▪ Read+write accesses by 2+ transactions that touch any

common table are serialized

▪ Read-only is parallel, but only between read+write accesses

▪ Row locking

▪ Read+write accesses by 2+ transactions that touch any

common row are serialized

▪ Read-only is parallel, but only between read+write accesses

© 2012 McObject LLC

Multi-Version Concurrency Control (MVCC)

▪ Optimistic model, no locks & no
complex lock arbitration

▪ No task is ever blocked by another

▪ Each task given a copy (“version”) of
objects it works with

▪ No serialization

• Similar in concept to
– Read-Copy-Update (RCU) and

– Software Transactional Memory (STM)
© 2012 McObject LLC

MVCC Update Performance vs. Database Lock

© 2012 McObject LLC

MVCC Read-Only Performance vs.
Pessimistic Lock

© 2012 McObject LLC

MVCC Insert Performance vs. Database Lock

Y-axis is objects acted on per second

X-axis is number of cores

© 2012 McObject LLC

MVCC Update Performance vs. Database Lock

© 2012 McObject LLC

MVCC Delete Performance vs. Database Lock

© 2012 McObject LLC

Observations

• Pessimistic coarse-grained locking exhibits
virtually no overhead
– When access is read-only, scales very well

– When access is read+write
• Flat performance for multiple cores, i.e. it’s N

transactions whether there is 1 core or 8 cores

• MVCC/RCU/STM has greater overhead
– Will never achieve equal read-only scalability

– Needs some number of concurrent operations for
concurrent ops to overcome greater overhead

© 2012 McObject LLC

Conclusions

▪ The goal is to maximize efficient use of
multiple cores

▪ Be wary of how “black box” software
components can work against your
goal

▪ Case-in-point: malloc and free &
pessimistic locking generally

▪ Old “single-core” methods don’t scale.
Learn to think with a multi-core
mentality

© 2012 McObject LLC

