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Achieving Linear Performance Gains With Multi-Core
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▪ Multi-core CPUs should make software 
faster

▪ But, processes often contend for system 
resources
– Threads vying for the standard C runtime memory allocator

– Contention for shared data

▪ Solutions
– Custom per-thread allocator

– Multi-version concurrency control (MVCC)



Memory Allocation

▪ malloc() and free() 

▪ new and delete

▪ Used liberally

▪ But without awareness of how they 
actually work
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The “Heap”
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▪ Organized as a pool of contiguous memory 
locations

▪ Referenced by a singly-linked chain of pointers

▪ Memory allocation:
– Walk the chain looking for a large enough free hole

– When found
• Unlink the hole

• Divide it

• Link remainder back in

• Return pointer to allocated memory



Many Threads Want the Same Resource…
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…End Up Being Serialized
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The Solution

▪ A custom memory manager that 

avoids synchronization

▪ Thread local allocator

▪ Based on block allocator

▪ Similar concept to Thread Local 

Storage
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Thread-Local Allocator

▪ Allocator creates and maintains a number of linked-lists 
(chains) of same-size “small” blocks that are made out of 
“large“ pages.

▪ To allocate memory, the allocator simply “unlinks” the 
block from the appropriate chain and returns the pointer 
to the block.

▪ When a new large page is necessary, the allocator uses a 
general-purpose memory manager (standard malloc) to 
allocate the page.

▪ As long as all objects are allocated and de-allocated locally 
(i.e. by the same thread), this algorithm does not require 
any synchronization mechanism at all.
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Thread Local Allocator

• Pending-free requests lists (PRLs) are maintained for each 
thread: when an object allocated in one thread is being 
de-allocated by another thread,  the de-allocating thread 
links the object into this list.

• Access to the PRLs is protected by a mutex.

• Each thread periodically de-allocates its share of objects 
on the list at once.

• The number of synchronization requests is reduced 
significantly:
– Often the object is freed by the same thread that had 

allocated it.

– When the object is de-allocated by a different thread, it 
does not interfere with all other threads, but only with 
those that need to use the same PRL.
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Thread-Local Allocator Data Structures

Each thread’s allocator maintains its “own” local data  that 

includes the  chains of blocks and its “pending free request list” 

within its TLS variables.
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Thread 1

32 bytes list

64 bytes list

512 bytes list pending free requests

list

Thread 2

32 bytes list

64 bytes list

512 bytes list pending free requests

list

Allocator’s structures (global) are mapped to each

thread  local storgae



Allocator API
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◼ The allocator exports three functions with syntax similar to the standard C 
runtime allocation.

◼ The interface also includes a simple way to redefine the default new and 
delete operators.

#ifndef __THREAD_ALLOC_H__

#define __THREAD_ALLOC_H__

#include <stddef.h>

#ifdef __cplusplus

extern "C" {

#endif

/* exported stuff */

void* thread_alloc(size_t size);

void* thread_realloc(void* addr, size_t size);

void  thread_free(void* addr);

#ifdef __cplusplus

}

/* redefine standard “new” and “delete” if necessary */

#include <new>

#ifdef REDEFINE_DEFAULT_NEW_OPERATOR

void* operator new (size_t size) throw(std::bad_alloc) { return thread_alloc(size); }

void operator delete (void* addr) throw() { thread_free(addr); }

void* operator new[](size_t size) throw(std::bad_alloc) { return thread_alloc(size); }

void operator delete[](void* addr) throw() { thread_free(addr); }

#endif

#endif

#endif



Impact of Thread Local Allocators

• Two tests
– Compare performance when the allocation pattern is thread-local: all de-

allocations are performed by the same thread as the original allocations.

– Compare performance when objects are allocated by one thread (called a 
producer) and freed by another (a consumer). 
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Test Results

The graph depicts elapsed time when 
allocation and release of memory are both 
within the same thread.
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Test Results, Cont.

The graph depicts elapsed time when every allocation is freed 

by a thread other than the one that allocated it.  The test was 

run with just two threads to isolate the performance difference 

to just the reduced synchronization requirements of the 

thread-local allocator, even when all allocations are “global”.
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Test Results, Cont.

• Result:  dramatic performance 
improvements are obtained by replacing 
standard allocation mechanism with 
thread-local in multi-threaded, multi-core 
applications.

• The allocator and test source code are 
available for free download:
www.mcobject.com/webinar_mem_mgt 
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Contention For Shared Data

▪ Similar problem to memory allocation

▪ Shared resource must be protected

▪ Pessimistic locking is the norm

▪ Pessimistic locking blocks concurrent 
access (i.e. serializes) regardless of 
granularity
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Pessimistic Locking

▪ Database

▪ Table

▪ Row

© 2012 McObject LLC 



Pessimistic Locking

▪ Database locking

▪ Read+write accesses are serialized

▪ Read-only accesses are parallel with other read-only 

accesses, but blocked by read+write accesses

▪ Table locking

▪ Read+write accesses by 2+ transactions that touch any 

common table are serialized

▪ Read-only is parallel, but only between read+write accesses

▪ Row locking

▪ Read+write accesses by 2+ transactions that touch any 

common row are serialized

▪ Read-only is parallel, but only between read+write accesses
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Multi-Version Concurrency Control (MVCC)

▪ Optimistic model, no locks & no 
complex lock arbitration

▪ No task is ever blocked by another

▪ Each task given a copy (“version”) of 
objects it works with

▪ No serialization 

• Similar in concept to 
– Read-Copy-Update (RCU) and

– Software Transactional Memory (STM) 
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MVCC Update Performance vs. Database Lock
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MVCC Read-Only Performance vs. 
Pessimistic Lock
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MVCC Insert Performance vs. Database Lock

Y-axis is objects acted on per second

X-axis is number of cores
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MVCC Update Performance vs. Database Lock
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MVCC Delete Performance vs. Database Lock
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Observations

• Pessimistic coarse-grained locking exhibits 
virtually no overhead 
– When access is read-only, scales very well

– When access is read+write
• Flat performance for multiple cores, i.e. it’s N 

transactions whether there is 1 core or 8 cores

• MVCC/RCU/STM has greater overhead
– Will never achieve equal read-only scalability

– Needs some number of concurrent operations for 
concurrent ops to overcome greater overhead
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Conclusions

▪ The goal is to maximize efficient use of 
multiple cores

▪ Be wary of how “black box” software 
components can work against your 
goal

▪ Case-in-point: malloc and free & 
pessimistic locking generally

▪ Old “single-core” methods don’t scale.  
Learn to think with a multi-core 
mentality
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