Multi-Core and Embedded Software: Optimize
Performance by Resolving Resource Contention

Presented by
McObject LLC

February 29, 2012

ject

© 2012 McObject LLC precision|data management

Achieving Linear Performance Gains With Multi-Core

= Multi-core CPUs should make software
faster

" But, processes often contend for system
resources

— Threads vying for the standard C runtime memory allocator
— Contention for shared data

= Solutions

— Custom per-thread allocator
— Multi-version concurrency control (MVCC)

© 2012 McObject LLC

Memory Allocation

" malloc() and free()
" new and delete
= Used liberally

" But without awareness of how they
actually work

© 2012 McObject LLC

The “Heap”

" Organized as a pool of contiguous memory
locations

= Referenced by a singly-linked chain of pointers
= Memory allocation:

— Walk the chain looking for a large enough free hole

— When found

Unlink the hole

Divide it

Link remainder back in

Return pointer to allocated memory

ject
precision|data management

© 2012 McObject LLC

Many Threads Want the Same Resource...

Tasl1 Taslk Task?3 Tasl4
HE AP o ¥ $ ¥

7 N\ T

TaslkS Taslt Tasl'? Tasks

© 2012 McObject LLC

...End Up Being Serialized

TS

T6

I5

T4

T3

T1

© 2012 McObject LLC

ject

recision | data management

The Solution

= A custom memory manager that
avoids synchronization

= Thread local allocator
= Based on block allocator

= Similar concept to Thread Local
Storage

© 2012 McObject LLC

Thread-Local Allocator

= Allocator creates and maintains a number of linked-lists
(chains) of same-size “small” blocks that are made out of
“large” pages.

= To allocate memory, the allocator simply “unlinks” the
block from the appropriate chain and returns the pointer
to the block.

= When a new large page is necessary, the allocator uses a
general-purpose memory manager (standard malloc) to
allocate the page.

= Aslong as all objects are allocated and de-allocated locally
(i.e. by the same thread), this algorithm does not require
any synchronization mechanism at all.

© 2012 McObject LLC

ject

precision|data management

Thread Local Allocator

* Pending-free requests lists (PRLs) are maintained for each
thread: when an object allocated in one thread is being
de-allocated by another thread, the de-allocating thread
links the object into this list.

* Access to the PRLs is protected by a mutex.

* Each thread periodically de-allocates its share of objects
on the list at once.

* The number of synchronization requests is reduced
significantly:
— Often the object is freed by the same thread that had
allocated it.

— When the object is de-allocated by a different thread, it
does not interfere with all other threads, but only with
those that need to use the same PRL.

ject
precision|data management

© 2012 McObject LLC

Thread-Local Allocator Data Structures

Allocator’s structures (global) are mapped to each
thread local storgae

Each thread’s allocator maintains its “own” local data that
includes the chains of blocks and its “pending free request list”
within its TLS variables.

ject

© 2012 McObject LLC precision|data management

Allocator API

The allocator exports three functions with syntax similar to the standard C
runtime allocation.

The interface also includes a simple way to redefine the default new and
delete operators.

© 2012 McObject LLC

#ifndef _ THREAD_ALLOC_H__
#define_ THREAD_ALLOC_H__

#include <stddef.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifdef __cplusplus
}

I* redefine standard “new” and “delete” if necessary */
#include <new>

#ifdef REDEFINE_DEFAULT_NEW_OPERATOR

void* operator new (size_t size) throw(std::bad_alloc) { return thread_alloc(size); }
void operator delete (void* addr) throw() { thread_free(addr); }

void* operator new[](size_t size) throw(std::bad_alloc) { return thread_alloc(size); }
void operator delete[](void* addr) throw() { thread_free(addr); }

#endif
#endif
#endif

ject

precision|data management

Impact of Thread Local Allocators

e Two tests

— Compare performance when the allocation pattern is thread-local: all de-
allocations are performed by the same thread as the original allocations.

— Compare performance when objects are allocated by one thread (called a
producer) and freed by another (a consumer).

ject

© 2012 McObject LLC precision|data management

Test Results

elapsed time (seconds), 10,000,000 alloc/free X 24 threads, 24 cores

"local" TLA (1

O elapsed time

"local" malloc 653

0 100 200 300 400 500 600 700

The graph depicts elapsed time when
allocation and release of memory are both
within the same thread. ject

© 2012 MCObjeCt LLC precision| data management

Test Results, Cont.

elapsed time (seconds) 10,000,000 alloc/free X 2 threads, 2 cores

"global" TLA

O elapsedtime

"global" malloc

22 23 24 25 26 27 28 29

The graph depicts elapsed time when every allocation is freed
by a thread other than the one that allocated it. The test was
run with just two threads to isolate the performance difference
to just the reduced synchronization requirements of the
thread-local allocator, even when all allocations are “global’.

ject
precision|data management

© 2012 McObject LLC

Test Results, Cont.

e Result: dramatic performance
improvements are obtained by replacing
standard allocation mechanism with
thread-local in multi-threaded, multi-core

applications.

e The allocator and test source code are
available for free download:
www.mcobject.com/webinar mem mgt

ject
ision | data management

© 2012 McObject LLC

Contention For Shared Data

" Similar problem to memory allocation

= Shared resource must be protected

m Pessimistic loc

m Pessimistic loc

King is the norm

King blocks concurrent

access (i.e. serializes) regardless of

granularity

© 2012 McObject LLC

Pessimistic Locking

= Database
= Table
= Row L S

T1R2 LELis,
T1R3 L
T1R4 T3R4
T1RS Ll

&_’Tlfﬁ

T2 R5
Task 1

T3R3 J Read anly
T1R5 |I
T3 R2

Task 2 Task3

ject

© 2012 McObject LLC precision|data management

Pessimistic Locking

= Database locking
= Read+write accesses are serialized

» Read-only accesses are parallel with other read-only
accesses, but blocked by read+write accesses

= Table locking

» Read+write accesses by 2+ transactions that touch any
common table are serialized

= Read-only is parallel, but only between read+write accesses

= Row locking

» Read+write accesses by 2+ transactions that touch any
common row are serialized

= Read-only is parallel, but only between read+write accesses

ject
precision|data management

© 2012 McObject LLC

Multi-Version Concurrency Control (MVCC)

" Optimistic model, no locks & no
complex lock arbitration

" No task is ever blocked by another

" Each task given a copy (“version”) of
objects it works with

= No serialization

* Similar in concept to
— Read-Copy-Update (RCU) and
— Software Transactional Memory (STM)

© 2012 McObject LLC

MVCC Update Performance vs. Database Lock

4,000,000
3,500,000 /
3,000,000

2,500,000 /

2,000,000 // .
1,500,000 ——MVCC

1,000,000 »//
500,000 e

0 | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ject

© 2012 McObject LLC precision|data management

MVCC Read-Only Performance vs.
Pessimistic Lock

Cursor lterations

EQ, 000,000
70,000,000
60,000,000 -
50,000,000 -

40,000,000 -

30,000,000 —— MURSIW
20,000,000 - — Y
10,000,000 -

(1)
1 . 3 4 3 & 7 & % 100 11 1% 13 14 15 18 17 1B 19 20

Obpcts PerSecond

Threads

ject

© 2012 McObject LLC precision|data management

MVCC Insert Performance vs. Database Lock

Y-axis is objects acted on per second

X-axis is number of cores

8,000,000

7,000,000 e
6,000,000 /

5,000,000 /

7

4,000,000 ,”/’/’//
3,000,000

MURSIW

MVCC

2,000,000 //
1,000,000 7

4]

9 i 11 12 13 14 15 16 17 18 19 20

© 2012 McObject LLC

ject

precision|data management

MVCC Update Performance vs. Database Lock

3,500,000
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000
500,000

0

Objects Per Second

Update Performance
/ —— MURSIW
/ —— MVCC
R it
-
1 2 3 456 78 9101 12131415 1617 1819 &
Threads
ject

© 2012 McObject LLC

recision |data management

MVCC Delete Performance vs. Database Lock

3,500,000

3,000,000 = -

/ v
2,500,000
2,000,000
/ e MURSIW
1,500,000
/ —VCC

1,000,000 ;/

500,000 - e

0 1 1
1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19 20

ject
precision|data management

© 2012 McObject LLC

Observations

* Pessimistic coarse-grained locking exhibits
virtually no overhead

— When access is read-only, scales very well

— When access is read+write

* Flat performance for multiple cores, i.e. it’s N
transactions whether there is 1 core or 8 cores

* MVCC/RCU/STM has greater overhead

— Will never achieve equal read-only scalability

— Needs some number of concurrent operations for
concurrent ops to overcome greater overhead

ject
precision|data management

© 2012 McObject LLC

Conclusions

" The goal is to maximize efficient use of
multiple cores

" Be wary of how “black box” software
components can work against your
goal

" Case-in-point: malloc and free &
pessimistic locking generally

" Old “single-core” methods don’t scale.
Learn to think with a multi-core
mentality

© 2012 McObject LLC

