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Achieving Linear Performance Gains With Multi-Core

= Multi-core CPUs should make software
faster

" But, processes often contend for system
resources

— Threads vying for the standard C runtime memory allocator
— Contention for shared data

= Solutions

— Custom per-thread allocator
— Multi-version concurrency control (MVCC)

© 2012 McObject LLC



Memory Allocation

" malloc() and free()
" new and delete
= Used liberally

" But without awareness of how they
actually work
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The “Heap”

" Organized as a pool of contiguous memory
locations

= Referenced by a singly-linked chain of pointers
= Memory allocation:

— Walk the chain looking for a large enough free hole

— When found

Unlink the hole

Divide it

Link remainder back in

Return pointer to allocated memory
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Many Threads Want the Same Resource...
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...End Up Being Serialized
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The Solution

= A custom memory manager that
avoids synchronization

= Thread local allocator
= Based on block allocator

= Similar concept to Thread Local
Storage
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Thread-Local Allocator

= Allocator creates and maintains a number of linked-lists
(chains) of same-size “small” blocks that are made out of
“large” pages.

= To allocate memory, the allocator simply “unlinks” the
block from the appropriate chain and returns the pointer
to the block.

= When a new large page is necessary, the allocator uses a
general-purpose memory manager (standard malloc) to
allocate the page.

= Aslong as all objects are allocated and de-allocated locally
(i.e. by the same thread), this algorithm does not require
any synchronization mechanism at all.
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Thread Local Allocator

* Pending-free requests lists (PRLs) are maintained for each
thread: when an object allocated in one thread is being
de-allocated by another thread, the de-allocating thread
links the object into this list.

* Access to the PRLs is protected by a mutex.

* Each thread periodically de-allocates its share of objects
on the list at once.

* The number of synchronization requests is reduced
significantly:
— Often the object is freed by the same thread that had
allocated it.

— When the object is de-allocated by a different thread, it
does not interfere with all other threads, but only with
those that need to use the same PRL.
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Thread-Local Allocator Data Structures

Allocator’s structures (global) are mapped to each
thread local storgae

Each thread’s allocator maintains its “own” local data that
includes the chains of blocks and its “pending free request list”
within its TLS variables.
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Allocator API

The allocator exports three functions with syntax similar to the standard C
runtime allocation.

The interface also includes a simple way to redefine the default new and
delete operators.
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#ifndef _ THREAD_ALLOC_H__
#define_ THREAD_ALLOC_H__

#include <stddef.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifdef __cplusplus
}

I* redefine standard “new” and “delete” if necessary */
#include <new>

#ifdef REDEFINE_DEFAULT_NEW_OPERATOR

void* operator new (size_t size) throw(std::bad_alloc) { return thread_alloc(size); }
void operator delete (void* addr) throw() { thread_free(addr); }

void* operator new[](size_t size) throw(std::bad_alloc) { return thread_alloc(size); }
void operator delete[](void* addr) throw() { thread_free(addr); }

#endif
#endif
#endif
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Impact of Thread Local Allocators

e Two tests

— Compare performance when the allocation pattern is thread-local: all de-
allocations are performed by the same thread as the original allocations.

— Compare performance when objects are allocated by one thread (called a
producer) and freed by another (a consumer).
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Test Results
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The graph depicts elapsed time when
allocation and release of memory are both
within the same thread. ject
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Test Results, Cont.

elapsed time (seconds) 10,000,000 alloc/free X 2 threads, 2 cores
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The graph depicts elapsed time when every allocation is freed
by a thread other than the one that allocated it. The test was
run with just two threads to isolate the performance difference
to just the reduced synchronization requirements of the
thread-local allocator, even when all allocations are “global’.
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Test Results, Cont.

e Result: dramatic performance
improvements are obtained by replacing
standard allocation mechanism with
thread-local in multi-threaded, multi-core

applications.

e The allocator and test source code are
available for free download:
www.mcobject.com/webinar mem mgt
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Contention For Shared Data

" Similar problem to memory allocation

= Shared resource must be protected

m Pessimistic loc

m Pessimistic loc

King is the norm

King blocks concurrent

access (i.e. serializes) regardless of

granularity
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Pessimistic Locking

= Database
= Table
= Row L S
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Pessimistic Locking

= Database locking
= Read+write accesses are serialized

» Read-only accesses are parallel with other read-only
accesses, but blocked by read+write accesses

= Table locking

» Read+write accesses by 2+ transactions that touch any
common table are serialized

= Read-only is parallel, but only between read+write accesses

= Row locking

» Read+write accesses by 2+ transactions that touch any
common row are serialized

= Read-only is parallel, but only between read+write accesses
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Multi-Version Concurrency Control (MVCC)

" Optimistic model, no locks & no
complex lock arbitration

" No task is ever blocked by another

" Each task given a copy (“version”) of
objects it works with

= No serialization

* Similar in concept to
— Read-Copy-Update (RCU) and
— Software Transactional Memory (STM)
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MVCC Update Performance vs. Database Lock
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MVCC Read-Only Performance vs.
Pessimistic Lock
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MVCC Insert Performance vs. Database Lock

Y-axis is objects acted on per second

X-axis is number of cores
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MVCC Update Performance vs. Database Lock

3,500,000
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000
500,000

0

Objects Per Second

Update Performance
/ —— MURSIW
/ —— MVCC
R it
-
1 2 3 456 78 9101 12131415 1617 1819 &
Threads
ject

© 2012 McObject LLC

recision |data management



MVCC Delete Performance vs. Database Lock
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Observations

* Pessimistic coarse-grained locking exhibits
virtually no overhead

— When access is read-only, scales very well

— When access is read+write

* Flat performance for multiple cores, i.e. it’s N
transactions whether there is 1 core or 8 cores

* MVCC/RCU/STM has greater overhead

— Will never achieve equal read-only scalability

— Needs some number of concurrent operations for
concurrent ops to overcome greater overhead
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Conclusions

" The goal is to maximize efficient use of
multiple cores

" Be wary of how “black box” software
components can work against your
goal

" Case-in-point: malloc and free &
pessimistic locking generally

" Old “single-core” methods don’t scale.
Learn to think with a multi-core
mentality
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