
Reprinted with permission:

Is SQL Fast Enough for Tick Data?
Most enterprise systems query, sort and analyze data via database management systems (DBMSs) 
based on the SQL database programming language. Historically, tick data management in capital 
markets has stood out as an exception: Trading systems have eschewed SQL due to its perceived 
performance latency and unpredictability, in favor of more labor-intensive, lower-level program-
ming languages (namely q and C/C++) for database operations. While this approach yields fast 
systems, disadvantages include slower time to deployment compared to using SQL – a curse for 
financial technology, where a technical advantage can be very profitable, but often only for a 
limited time. It also results in a mismatch between the skills that trading technology shops need 
(low-level languages) vs. a labor pool heavily slanted toward SQL skills and experience.

By Steven Graves, McObject CEO and co-founder
Published on November 5, 2015

But is SQL really too slow for trading systems? Judg-
ing from the results of recent benchmark tests, that 
idea might be as outdated as the image of buyers and 
sellers gathered in trading pits, giving hand signals, 
shouting orders and scribbling transactions in note-
books.

If there is a gold standard for judging tick data man-
agement performance, it is the STAC-M3 benchmark 
specified by the Securities Technology Analysis 
Center (STAC). STAC develops and publishes numer-
ous benchmarks; it closely monitors vendors’ imple-
mentations of these tests, and audits results, so that 
its published reports provide true apples-to-apples 
comparisons of the technology stacks (hardware and 
software) used. Notably, while vendors provide the 
equipment, developers and testing fees for rounds of 
benchmark testing, it is STAC itself that publishes 
and stands behind the results.

The STAC-M3 benchmark focuses on tick analytics, 
measuring performance on complex queries that were 
designed by trading firms on the STAC Benchmark 
Council to reflect real-world capital markets comput-
ing demands. According to STAC, the STAC-M3 tests 
“solutions that enable high-speed analytics on time 

series data, such as tick-by-tick market data (aka ‘tick 
database’ stacks).”

Prior to October 2014, vendor STAC-M3s published 
by STAC used C/C++ and q exclusively to store and 
query data in the tick database. But that changed 
in October 2014, with publication of the first-ever 
STAC-M3 results featuring a SQL database system. In 
that implementation, McObject’s eXtremeDB Finan-
cial Edition SQL DBMS deployed on an IBM Power 
System S824 server with IBM FlashSystem 840 stor-
age set new speed records in 9 of the STAC-M3’s 17 
response-time benchmarks; delivered record-setting 
low standard deviation (low jitter) in eight of the 17 

http://financial.mcobject.com
Phone: 425-888-8505

McObject LLC 
33309 1st Way South Suite A-208 

Federal Way, WA 98003 



tests; and turned in a sum of mean benchmark times 
(which equates to the best time across all 17 bench-
mark tests) 1.6x faster than the best previously pub-
lished STAC-M3 results: 66 seconds vs. 106 seconds.

Should this be attributed to IBM POWER8 “big iron” 
triumphing over previous Intel-based stacks? STAC 
followed up less than a month later by publishing 
another STAC-M3 report in which eXtremeDB Fi-
nancial Edition SQL DBMS on an Intel-based 4-node 
cluster in the cloud (Lucera) exceeded the previous 
best non-eXtremeDB results for 5 of the 17 tests. A 
new STAC-M3 report, issued Oct. 29, 2015, shows 
McObject’s SQL DBMS setting new records in six 
of the 17 tests and cutting time to complete the entire 
benchmark by an additional 13 seconds (almost 20%) 
from the October 2014 results.

The fact that a SQL DBMS now “owns” nine of the 
17 STAC-M3 tests demonstrates that SQL, in and of 
itself, is not a performance bottleneck. And this stands 
to reason. SQL (like q) is merely a language; it is the 
implementation of the language, and characteristics of 
the underlying DBMS, that determine performance. 
So what SQL DBMS characteristics contributed to the 
record-setting STAC-M3 results?
     •  Columnar layout
     •  Pipelining
     •  Distributed Query Processing

Columnar Layout

The vast majority of DBMSs organize data internally 
in a row-wise fashion. Each table in the database can 
be visualized like a spreadsheet: many rows, each 
consisting of many columns. Each row is a record, 
and each column is an element of that record type. 
Further, database systems typically store and retrieve 
pages of data. Page size varies, but a page will have 
as many rows on the page as the page size will allow 
– e.g., if a row is 200 bytes wide (irrespective of the 
number of columns) and the page size is 4096, each 
page will hold 20 rows.

With these assumptions, if I want to calculate the 
5-minute moving average of intraday asking price for 
a particular ticker symbol, and there are 5,000 ticks 
per day, the DBMS has to read 250 pages, and trans-
fer 1,024,000 bytes from storage to memory, and then 
from memory to CPU, to support the calculation. As a 
data element within a record that contains additional 
elements (date, time, etc.), the “ask” data will occupy 
a single column within the database table. If we also 
assume (reasonably) that the “ask” column is defined 
as a 4-byte floating point number (i.e., the individual 
“ask” prices are 4 bytes in size), then the amount of 
actual data needed for the calculation is just 20,000 
bytes (5,000 ticks X 4-bytes). But since the DBMS 
moves data around in pages of rows (rather than just 
the column of interest), 1,024,000 bytes of data must 
be transferred into CPU cache in order to process that 
20,000 bytes – 98% of the I/O is wasted!

eXtremeDB Financial Edition offers an alternative 
to this row-based approach. Database designs that 
use its columnar data layout cause time series data 
to be stored in columns we call sequences that hang 
off of their associated rows. For example, as shown 
in Figure 1, below, the time series data for IBM and 
ORCL hang off of their respective rows. With this 
organization, each column (sequence) of the time se-
ries is stored on its own page(s). In other words, each 
database page only contains values of one sequence. 
Within the same 4,096 byte page size, this columnar 
data layout can fit 1024 “ask” values, and the DBMS 
only needs to read 5 pages, or just 2% of the I/O 
required by the row-wise organization (5,000 ticks 
/ 1,024 per page = 5 pages). And, because only the 
needed column (“ask”) is being fetched and not the 
entire row, none of that bandwidth is wasted.

2



Figure 1.
Traditional DBMSs bring rows of data into CPU cache for 
processing. But financial data – such as ticks, trades and 
quotes – are better handled by a column-based layout.

Pipelining

Columnar storage is all well and good if we only have 
to process a single data element. But financial analysis 
commonly involves more complex computation. Con-
sider a simple multi-element calculation like:

         d = a X b + e

When using either traditional SQL, a low-level data-
base interface, or a vector-based language (e.g., q or 
R), if a, b and c are sequences (vectors) of 100 million 

values, this operation necessi-
tates creating a temporary re-
sult for “a X b” containing 100 
million values, then “feeding” 
this temporary result to the next 
step of the formula, “+ e,” to get 
the final result of 100 million 
elements for “d.” Obviously, a 
100 million value sequence of 
4-byte floating point numbers is 
400,000,000 bytes – far too large 
to stay in the CPU cache – so the 
data generated during this calcu-
lation (the interim results) will 
be shuffled to temporary storage 
(SQL temporary tables, if it is a 
SQL DBMS) in RAM.

Or not. A technique we’ve 
implemented in eXtremeDB 
called pipelining avoids transfer-
ring any of the interim results 
between CPU cache and main 
memory. Pipelining brings a 
page of “a” and a page of “b” 
into cache and produces one 
page of the temporary result 
from “a X b.” Then it brings a 
page of “e” into cache to per-

3

form the “+ e” operation and produce a page of the 
final result “d.” At this point, a page of the final result 
is ready for the application to use (store it back in the 
database, plot it in a GUI, etc.). When the application 
iterates off of the last value of the page of “d,” the 
process repeats: fetch a page of “a” and “b,” produce 
a temporary page, fetch a page of “e” and produce a 
page of “d” and hand off to the application for further 
processing. This continues until the a, b and e time 
series are exhausted.

Because we only produce a page at a time of the 
interim and final result, there’s no need to ever move 
anything from cache to RAM (a 4,096 byte page is 
plenty small enough to remain in CPU cache). 
Pipelining means that the output of one function 



(“a X b”) becomes input to the next function (“+ e”). 
That’s very different than having to process the en-
tirety of “a X b” before the next step in the formula. 
The practical effect is this: The CPU’s cache operates 
on the same silicon and at the same speed as CPU 
itself, which is at least 2X faster than memory or the 
bus speed between memory and CPU (often more than 
2X). Let’s go with 2X, for simplicity. Without pipelin-
ing, the interim result has to be written to RAM, and 
then read back from RAM for the next step. So the 
performance penalty relative to pipelining is 8X (4 
transfers to/from RAM, each of which is 2X slower).
 
    a X b     1 transfer to write the temporary result 
	      to RAM

    + e       1 transfer to read the temporary result 
	      from RAM

    = d       1 transfer to write the final result to RAM

                1 transfer for the application to 
	      read/process the final result from RAM

4

So again, we have 4 transfers, each of which is 2X 
slower than the CPU. Pipelining eliminates all of these 
transfers. This is what we call “on-chip analytics” and 
its speed and performance go well beyond in-memory 
analytics.

Another benefit is that results are available to the applica-
tion after processing just the first page of data. In contrast, 
without pipelining, all of the interim and final results 
must be processed before the application receives any 
result.

Distributed Query Processing

The pipelining technique described above enables the 
DBMS to keep one core of the CPU really, really busy. 
But how do I leverage the power of 16 cores – or four 
servers with 16 cores each (64 cores total)?

The answer is sharding and distributed query process-
ing. For optimal performance on one 16-core server, the 
DBMS partitions the database into 16 shards and “stands 
up” an eXtremeDB server for each shard. The distributed 
query client submits the query to all 16 servers, each of 

Figure 2.



which produces a partial result set from its portion of 
the total database. The client assembles the 16 partial 
result sets into complete results for presentation to the 
application. In this manner, all 16 cores work equally 
hard on the problem.

This approach works with any number of servers, and 
was used in the three record-setting STAC-M3 bench-
marks described above. The distributed query client 
only needs to know each server’s IP address and port 
number, whether the server(s) is local (on the same IP 
address as the client), or not. Figure 2, above, illustrates.

Importantly, the client application needn’t know any-
thing about the shards or servers. It submits exactly 
the same SQL statement, and receives exactly the 
same result set, as would be used in a standalone situ-
ation. All the scattering of the SQL and gathering and 
re-assembling of partial results is accomplished by the 
DBMS’s distributed query processing capability.

Tying It All Together With SQL

Does pipelining require pages of arcane code? One 
striking feature of the technique is that it is accom-
plished via that most common of data processing 
commands, the SQL SELECT statement. This is best 
illustrated with another example.

Two trends commonly followed in technical analysis 
are the 50-day and 200-day moving averages. When 
the 50-day moving average crosses below the 200-day 
moving average, it can be a signal to sell the equity. 
Conversely, when the 50-day moving average crosses 
above the 200-day moving average, it can be a signal 
to buy the equity.

The following example demonstrates how a simple 
SELECT statement can calculate the 50- and 200-day 
moving averages of an equity, subtract one from the 
other, determine when the difference between them 
crossed over or under zero (meaning, the lines crossed 
in one direction or the other), and map those crossover 
points back to the date in the time series at which they 
occurred. The functions beginning “seq” are from 
eXtremeDB Financial Edition’s library of vector-based 
statistical functions; this naming indicates they are 
designed to execute over sequences (columns) of time 
series data:

5

SELECT

  seq_map(closeprice,

    seq_cross(

      seq_sub(

        seq_window_agg_avg(closeprice, 50),

        seq_window_agg avg(closeprice, 200)

      ),

    1)

  ) as Cross

FROM security

WHERE symbol = ‘IBM’

By nesting the functions in the SELECT statement, 
we’ve created a pipeline. The results from the inner-
most functions (seq_window_agg_avg) will become in-
put to the next outer function in the pipeline (seq_sub) 
and so on.

Why SQL?

There are some 11+ million programmers earning their 
living writing code (and many millions more hobby-
ists). Estimates for the number of “data scientists” 
range anywhere from 11,400 (seems low) to 1,000,000 
(seems high). The point is, there is a large pool of 
programmer talent that knows SQL. Conversely, only 
a small number of programmers know any database 
vendor’s proprietary language or API, such as the k or 
q languages, or eXtremeDB’s lower-level (non-SQL) 
API.

In addition to being widely known, SQL is a more pro-
ductive and readable (and, therefore, maintainable) pro-
gramming language than a low-level proprietary API or 
language, just like a higher-level language like Python 
can be written faster than a low-level language like 
C. If an organization can get comparable performance 
using SQL (or performance isn’t a consideration), then 
the advantages of shorter development time and access 
to a large talent pool carry relatively higher weight.

To put a finer point on it, let’s look at two comparisons. 
Figure 3, below, shows the moving averages example 
described above in SQL, but implemented in the kdb+ 
“q” language. Figure 4 illustrates how to calculate the 
effect of stock splits on historical (end of day) trade 
data, first in SQL and then in eXtremeDB’s native API 
for C/C++.



6

Figure 3.



7

Conclusion

Capital markets technology must digest, sort and 
analyze more data, and do it faster, than ever before. 
To meet this need, DBMSs for real-time financial 
systems have cast a wide net in seeking performance 
gains. Some improvements are internal to the DBMS, 
such columnar handling of data. Others optimize the 
DBMS’s interaction with external hardware such as 
networking and storage. The techniques presented 
above are a hybrid, leveraging both vector-based pro-
cessing and columnar data layout (internal improve-
ments), but also streamlining DBMS interaction with 
its hardware environment, namely the CPU cache.

Figure 4.

Multi-core CPUs also present DBMSs with the oppor-
tunity to ramp up performance, via horizontal parti-
tioning, as discussed above. Because SQL client/server 
DBMSs typically include robust built-in network 
communications mechanisms, they can be especially 
well-suited as the starting point for solutions that 
exploit sharding’s promise. The resulting high perfor-
mance, along with SQL’s high development productiv-
ity and wide familiarity among IT professionals, make 
a strong case for SQL having a bright future in capital 
markets systems.


